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Introduction: In India since 2002,after the introduction of 18F-FDG for various clinical applications, 

different other PET radiopharmaceuticals have also been developed progressively. However, only a 

few of them make their place in routine clinical practices; partly because of stringent regulatory 

guidelines& facilities and also due to the physio-chemical properties of radionuclide itself. The most 

common radionuclides for PET radiopharmaceuticals include 18F, 68Ga,11C, 13N, 15O, 64Cu, and 

82Rb. AIMS and Objective: This study aims to provide an overview of PET radiopharmaceuticals 

that are commonly synthesized either in-house (onsite) or in commercial distribution centers after 

fulfilling the regulatory and quality aspects. Result and Discussion: 18F radionuclide as PET 

radiopharmaceutical has made its place inevitable in oncology, Cardiology, and Neurology. Apart 

from this, various other PET radiopharmaceuticals like 68Ga, 11C, 64Cu, 13N, etc. play a vital role in 

the management of other malignancies like carcinoma prostate, neuroendocrine tumors, etc. PET 

radiopharmaceuticals are the basis for molecular imaging and their utilization for appropriate clinical 

indications in diseases.  Conclusion: This review article will provide a basic understanding of various 

PET radiopharmaceuticals including their synthesis, properties, and clinical uses among physicians & 

technologists. Most of the PET radiopharmaceuticals are being used for diagnosing and treatment 

evaluations of various oncology and others diseases patients. 
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INTRODUCTION 
 

After 1976, there was a gradually increased in PET 

radiopharmaceuticals, developed as the clinical introduction of 

18F-FDG for various medical applications. The PET tracer 

plays a crucial role because it provides the basis both for 

image quality and clinical interpretation. It is composed of the 

radionuclide and the molecular vehicle which determines the 

(bio-)chemical properties (e.g. binding characteristics, 

metabolism, elimination rate).Though, few of them could be 

involved in routine clinical use in hospitals partly because of 

restrictions in regulations and facilities
(1)

.  
 

Positron emission tomography uses radioactive tracers and 

enables the functional imaging of several metabolic processes, 

blood flow measurements, regional chemical composition, and 

chemical absorption. The most common radionuclides for PET 

radiopharmaceuticals include 11C, 15O, 13N, 18F, 68Ga, and 

82Rb (as mentioned in Table 1). The radiation issue and short 

half-life of these positron emitters result in unavoidable 

limitations on the manufacturing and clinical use of PET 

radiopharmaceuticals. Depending on the targeted processes 

within the living organism, different tracers are used for 

various medical conditions, such as cancer, particular brain 

pathologies, cardiac events, and bone lesions, where the most 

commonly used tracers are radio labeled with 18F is 18F-

FDG. Oxygen-15 isotope is mostly involved in blood flow 

measurements, whereas a wide array of 11C-based compounds 

have also been developed for neuronal disorders according to 

the affected neuroreceptors, prostate cancer, and lung 

carcinomas.
(2)

 
 

Over the last decade, the initial focus on medical imaging 

based on detection and diagnosis has reoriented towards 

prognosis, tissue characterization, and prediction of treatment 

efficacy. To do this, functional imaging, such as positron 

emission tomography (PET) has become essential in the 

clinical decision-making process in various fields of medicine 
(3)

. Moreover, hybrid imaging, combining PET with computed 

tomography (CT) or magnetic resonance imaging (MRI), has 

increased the diagnostic accuracy of PET by the benefit of the 

morphological information obtained by the CT and MRI scans 

and the implementation of attenuation correction. PET 

represents a quantitative imaging tool that appears to surpass 

the other nuclear technique. However, the answer to the highly 

debated question of which modality will monopolize nuclear 

imaging technologies remains unsettled
(4)

. Traditionally, when 

compared with older modalities, PET technology provides 

better image resolution, less attenuation (due to higher photon 

energy) and scatter artifacts, and, consequently, superior 

diagnostic capabilities. Two of the most important advantages 

of PET are represented by PET's higher sensitivity and more 

robust and flexible tracers, making PET a versatile and 

powerful tool for clinical and research applications. These 

advantages, however, come with a high-cost burden that limits 

the availability of PET imaging. Most positron-emitting 
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Table1 Main Characteristics of common positron-emitting radioisotopes. 
 

S.N

. 

Name of 

radionuclide 
Half-Life 

ß + 

(%) 

Max Eß 

(MeV) 

Max ß+ 

range 

(mm 

Methods of 

Production 

1 18F 110 min 97 0.635 2.4 Cyclotron 

2 68Ga 68 min 88 1.9 8.2 Cyclotron/Ge

nerator 
3 11C 20 min 99 0.96 4.1 Cyclotron 

4 15O 123 sec 100 1.19 5.1 Cyclotron 

5 13N 10 min 100 1.72 7.3 Cyclotron 
6 82Rb 78 sec 85 3.35 14.1 Cyclotron 

 

 

radioisotopes have short half-lives and require in-house 

cyclotron production 
(5)

.  

 

RESULTS AND DISCUSSION 
 

PET is a powerful imaging modality, which gives us 

quantitative information on the bio-distribution of positron-

emitting labeled radiopharmaceuticals in the body. Positrons 

(β+) are positively charged beta particles. They are emitted 

when the atom is proton enriched. A positron has only a 

transient existence. The PET is based on the coincidence 

detection of the two photons. Coincidence detection is a 

powerful method enhancing the sensitivity and dynamic-

imaging capabilities of PET. PET camera systems contain a 

ring of detectors that encircles the patient 
(6)

.  

Four positron-emitting radioisotopes are considered the 

biologic tracers, carbon11, nitrogen-13, oxygen-15, and 

fluorine-18. 11C, 15O, and 13N are referred to as the 

fundamentals of life. They can be easily substituted directly 

into bio-molecules without changing the properties of the 

molecule.  As 18F is not a normal constituent of biological 

molecules but it can often be substituted for a hydroxyl group 

as in the case of deoxyglucose or can be substituted for a 

hydrogen atom in a molecule or placed in a position where its 

presence does not significantly alter the biological behavior of 

the molecule. Currently, there are four PET 

radiopharmaceuticals officially recognized by the FDA: 

sodium fluoride (Na18F) for bone imaging, rubidium chloride 

(82RbCl) for assessment of regional myocardial perfusion in 

the diagnosis and localization of myocardial infarction, 18F-

FDG for identifying the regions of abnormal glucose 

metabolism and primary and metastatic malignant diseases 

and 13N-NH3 for assessment of myocardial blood flow. 

18FDG is currently the most widely used PET 

radiopharmaceutical in clinical oncology in addition to its 

clinical applications in cardiology and neurology. The 

application of PET in clinical oncology is increasing since 

many molecular targets relevant to cancer can be labeled with 

positron emitter radionuclides 
(7)

. 
 

Table 2 List of FDA-approved PET radiopharmaceuticals 
 

S.N. Radionuclide Radiopharmaceuticals 

1 18F 18F-FDG, 18F-FCholine, 18F-FDOPA, 
18F-FET, 18F-FLT,  

18F-NaF, 18F-FMISO 

2 68Ga 68Ga-Citrate,  68Ga-DOTA-TOC 
3 11C 11C-CO,11C-Methionine, 11C-Flumazenil, 

11C-Spiroperidol  

11C-Raclopride, 11C-Sodium Acetate 

4 13N 13N-NH3 

5 15O 15O-CO,  15O-H2O 

6 82Rb 82Rb-Rubidium chloride 
 

QC procedure of PET radiopharmaceutical is usually very 

critical and very important since it is synthesized every day or 

is small-scale "prepared "in the radiopharmacy laboratory of a 

hospital
(8)

. A typical QC program of a PET 

radiopharmaceutical is involved from radionuclide production 

to final product release and a series of QC tests for PET 

radiopharmaceuticals include: 
 

1. Appearance, by visual assessment, 

2. pH determination,  

3. Radionuclidic identification, by gamma-ray 

spectrometry or half-life measurement, 

4. Radionuclidic purity, by gamma-ray spectrometry, 

5. Chemical purity, by high-pressure liquid 

chromatography (HPLC) or by thin-layer 

chromatography (TLC), 

6. Radiochemical purity, by HPLC with a radioactivity 

detector or by TLC with a radioactivity scanner; 
 

PET Radiopharmaceuticals  
 

18F-Labeled Compounds 
 

Subsequently, 18F is more stable as a radioisotope, its labeling 

has been the most widely used option in the manufacture of 

PET radiopharmaceuticals. Nevertheless, due to the higher 

electronegativity of the F atom (4.0) compared with the H 

atom (2.1), 18F labeling exhibits a great impact on the vehicle 

molecule's physicochemical properties. Moreover, the C-F 

bonds are more stable (in vivo) and stronger than the C–H 

bonds. Therefore, the inclusion of F in the biological molecule 

structures implies an extension of their half-lives within the 

organism, affecting the molecules’ metabolization, 

biodistribution, and protein-binding kinetics. The gold 

standard PET radiopharmaceutical, the 18F-FDG compound, 

is being taken up by the cancerous cells trusting on the 

enhanced metabolic and glycolytic rates inside the 

intracellular matrix.  
 

18F-FDG 
 

Since its synthesis in 1976, 18F-FDG has been the most 

widely used radiotracer for PET studies in neuroscience, 

cardiology, and oncology as mentioned in Table 3(82-83). 

After FDA approval in 1997, the 18F-FDG PET-CT scanner 

became an established imaging tool in the clinical assessment 

of many neoplasms, as well as non-malignant diseases 

including dementia, myocardial ischemia, inflammation, and 

infection (9-10). 
 

18F-FDG PET has become an established modality in the 

management of many cancers. It can be used for initial 

treatment strategy planning, like baseline staging- in 

lymphomas, and lung cancers, or for subsequent treatment 

strategy, as a follow-up of treatment in Head and neck tumors, 

pancreatic tumors, oesophageal cancers, etc. It is one-stop-

shop imaging to look for any distant metastasis and can 

upstage or downstage the tumors with high sensitivity and 

negative predictive value. Radiotherapy planning is also 
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assisted by FDG-PET-CT which ensures targeted therapy and 

protects the normal tissues from its harmful effects. Where 

appropriate to support qualitative findings, specific measures 

including standardized uptake values (SUV), metabolic tumor 

volume and lesion dimensions should be included. 

18F-FEDORA  
 

Dihydroxyphenylalanine (DOPA) has been known as an 

intermediate in the catecholamine synthesis pathway. One of 

the 18F-radiolabeled analogs, 3,4-dihydroxy-6-18F-fluoro-

phenylalanine (18F-DOPA), was first reported as a PET tracer 

for imaging pre-synaptic dopaminergic functions in 1983. The 

utility of 18F-FDOPA for the visualization of various 

peripheral tumor entities via PET can be attributed to the up-

regulation of amino acid transporters in malignant tissues due 

to an often increased proliferation. 18F-FDOPA has shown 

diagnostic advantages in the imaging of neuroendocrine cell-

related malignancies like neuroendocrine tumors (NETs), 

pheochromocytoma, pancreatic adenocarcinoma, and 

neuroblastoma (NB) regarding diagnostic efficiency and 

sensitivity (11-21). 
 

18F-FET 
 

Na+ -independent system L amino acid transporters (LATs) 

preferentially transport amino acids with large neutral side 

chains, including L-leucine, L-phenylalanine, and L-tyrosine. 

O-(2-18F-fluoroethyl)-L-tyrosine (18F-FETbelongs to the 

class of large neutral amino acids, which are transported via 

specific amino acid transporters, especially LATs. Though 

data today still do not reveal which transporter(s) are 

responsible for 18F-FET accumulation in cells, 18F-FET has 

been well known for its high uptake in brain tumors and its 

potential for grading tumors, particularly gliomas. Summarily, 

18F-FET has been well-investigated in differential diagnosis, 

grading, prognostication, treatment response assessment, and 

differentiating pseudo-progression from non-specific post-

therapeutic changes (22-29). 
 

18F-FLT 
 

Cellular proliferation plays an important role in cancer and has 

been an important imaging target of PET 

radiopharmaceuticals, especially with the aim targeting of 

DNA synthesis. 18F-fluorothymidine 18F-FLT, also known as 

18F Alovudine) has been designed with intracellular trapping 

of its phosphorylated metabolite within cells. Up to now, 18F-

FLT has been widely investigated in oncologic settings 

comprising tumor detection, staging, restaging, and response 

assessment to treatment and 18F-FLT imaging has several 

clinical advantages including non-invasive procedure, three-

dimensional tumor images, and simultaneous detection of 

multiple tumor sites. Also, 18F-FLT is capable to evaluate 

tumor heterogeneity in day-to-day practice (30-35). 
 

18F-FMISO  
 

Hypoxia means insufficient oxygen availability of a cell 

occurring. Hypoxia is an important prognostic indicator of 

response to either chemotherapy or radiation therapy in cancer 

management. Hypoxia is also an independent factor for 

predicting the metastases tendency of a tumor cell, because of 

its enhancement in DNA mutations of atypical cells and 

further appearance of more aggressive cells. Consequently, 1-

(2-hydroxy-3-[18F] fluoropropyl)-2-nitroimidazole (18F-

MISO) is the most established agent for assessing hypoxia and 

has been used for cancer imaging over the past 30 y for 

glioblastoma, non-small-cell lung cancer, and head and neck 

tumors. In addition, the high accuracy of 18F-MISO PET 

imaging for determining the duration of survival without 

relapses and for predicting the radiotherapy efficiency in 

patients with malignant tumors of various localizations has 

been reported. Furthermore, the prognostic potential of 18F-

FMISO for the therapeutic tumor oxygenation status has been 

confirmed for glioblastoma, head and neck cancer, lung 

cancer, breast cancer, pancreatic cancer, gynecologic cancers, 

cervical cancer, and sarcoma (36-44). 
 

18F-NaF 
 

The bone is the most common place of tumor metastases next 

to the lung and liver. Therefore, an early and accurate 

diagnosis of metastatic bone diseases thus plays an important 

role in the establishment of an adequate therapeutic strategy. 

18F-Sodium fluoride was introduced in 1962 and approved by 

FDA in 1972. 18F-NaF is a highly sensitive bone-seeking PET 

radiopharmaceutical. The clinical use of 18F-NaF keeps 

increasing worldwide. Additionally, uptake of 18F-NaF 

reflects blood flow and bone remodeling, and 18F-NaF has 

been proposed for use in the detection of benign and 

malignant osseous abnormalities that also allows the regional 

characterization of lesions in metabolic bone diseases (45-51). 
 

68 Ga-citrate  
 

In addition to war and famine, the bacterial infection has still 

been one of the major worldwide causes of human morbidity 

and mortality for centuries. Because of the trapping of gallium 

in the extra vascular compartment for inflammatory or 

infectious sites with the increased capillary permeability, and 

Table 3 Summary of the clinical utility of 18F-FDG 
 

Sl No. Discipline Diseases Application 

1 Oncology 

Tumour Evaluation 
Differentiate recurrent/residual tumor from 

necrosis 

Tumour Staging 
Malignant vs. benign. Lung nodules, 

primary breast and colon cancers. 

Tumour Monitoring Response to therapy 
Tumour Localization Metastases, abnormal sites 

2 Neurology 
Epilepsy 

Pre-surgical evaluation for epileptogenic 

foci (85–90% accuracy). 
Alzheimer’s Disease  

3 Cardiology 

Myocardial Viability 
Assessment of myocardial viability before 

cardiac surgery 

Identify high-risk patients 
Select patients who will benefit from 

bypass 

4 
Infection and 
Inflammation 

Orthopedic infections  

5 Psychiatry Schizophrenia, Depression  
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the iron-like binding characteristics in bacterial siderophores 

and activated lactoferrin in neutrophils, gallium is thought to 

be indirectly uptaken by macrophages or directly uptaken by 

bacteria. Thus, 68Ga-Citrate) has been used for clinical 

imaging of infection and inflammation since 1984. The 

utilities of 68Ga-Citrate include the monitoring of 

osteomyelitis, diskitis, intraabdominal infection, tuberculosis, 

and interstitial nephritis, as well as the localization of infection 

in patients with cellulitis and abscesses (52-55).  
 

68 Ga-DOTA-TOC  
 

NETs arose from neuroendocrine cells and are slow-growing 

tumors with year-by-year increased incidence rate and 75% of 

overall 5-years survival, which is strongly dependent on the 

stage and grade of the tumor. Because NETs have been known 

for their unique overexpression of somatostatin receptors 

(SSTrs) on tumor cells, SSTr-targeting PET 

radiopharmaceuticals provide a promising and useful approach 

for both diagnostic imaging and further peptide receptor 

radionuclide therapy (PRRT), such as 68Ga-labeled DOTA-

(Tyr3 )- octreotide acetate 68Ga-DOTA-TOC). Because 

octreotide is a subset of the amino acid in somatostatin and has 

been demonstrated to avidly bind to SSTr. 68Ga-DOTA-TOC 

has been recognized for its affinity toward both the type 2 

somatostatin receptor (SSTr2) and the type 5 somatostatin 

receptor (SSTr5). Also, 68Ga-DOTA-TOC was the first PET 

radiopharmaceutical to clinically localize to NETs in 2001 and 

has been widely used in Europe and several other countries to 

assist the therapy planning and accurate diagnosis of NETs 

patients. In addition, 68Ga-DOTA-TOC is valuable for 

neuroectodermal tumors, Hurthle cell thyroid carcinoma, 

prostate cancer patients with bone metastases, and 

autoimmune thyroid diseases like Graves' disease and 

Hashimoto's disease (56-65). 
 

82Rb-Rubidium Chloride 
 

Just like previously described 13N-NH3 and 15O-H2O, 82Rb-

Rubidium chloride (82Rb-RbCl) has been reported for a 

directly proportional relationship between its uptake and MBF 

since 1954. In addition, several studies have demonstrated the 

good diagnostic accuracy of 82Rb-RbCl in the monitoring of 

cardiac flow. Subsequently, the 82Sr-82Rb generator 

(CardioGen-82®) of Bracco Diagnostics has been approved 

by FDA for clinical cardiac imaging since 1989. Therefore, 

the production and administration of 82Rb-RbCl can be well 

coordinated with the 82Sr-82Rb generator in the clinic, 

although a short half-life (78 sec) of 82Rb. In brief, the 

clinical advantages of 82Rb-RbCl cardiac imaging include its 

capacity to accurately quantify MBF and low delivered 

radiation exposure for a rest/stress test resulting from its very 

short half-life (66-69) 
 

11 C-Labeled Compounds  
 

The 11C radionuclide emits maximum energy of 960 keV and 

has a half-life of only 20.4 min. The substitution of the carbon 

with a positron-emitting isotope in biological structures makes 

possible the development of specific labeled compounds, 

enforcing identical biochemical and pharmacological/ 

pharmacokinetic properties to those of the natural molecules 

(70-71). The short radioactive half-life of 11C involves that 

the radiopharmaceuticals labeled with this radionuclide do not 

require substantial radiation exposure, and allows the conduct 

of multiple studies for a short time interval and in the same 

individual. In addition, even though carbon-11 has a short 

half-life, it is also long enough for synthesis and purification. 

However, due to its radioactive decay, the radiosynthesis time 

should be kept as short as possible (72). The manufacture of 

11C-labeled compounds requires the availability of a 

cyclotron facility near the hospital where the study is to be 

performed since it must be developed on-site at the time of use 

(73). Carbon-11 decays to stable boron-11 mostly by positron 

emission (99.79%) and, to a lower extent, by electron capture 

(0.21%). Carbon-11 can be produced with a high molar 

activity in the range of 40–750 GBq/µmol at the end of 

synthesis (74). Since acetate is an essential substrate in cell 

energy and is quickly metabolized into acetyl-CoA in human 

cells, another salt vector-based compound is 11C-acetate [60] 

widely used for general cancers (75). The tracer was employed 

in urological malignancies, renal cell carcinoma, and bladder 

cancer. Moreover, several studies reported that 11C-acetate 

PET has also been considered and used in other types of 

malignancies (76), such as lung carcinomas and brain tumors, 

and that this tracer can detect rare tumors (e.g., multicentric 

angiomyolipoma of the kidney, thymoma, and 

cerebellopontine angle schwannoma). In the context of 

prostate cancer, 11C-acetate cannot accurately distinguish 

between benign prostatic hyperplasia and prostate cancer, 

presenting comparable uptake in both conditions. In contrast, 

other studies reported higher uptake affinities of 11C-acetate 

in tumor cells than in normal prostate tissue. However, 

potential false-positive uptakes might also account for the 

inflammatory effects within the cancer cells. In 2012, Schöder 

et al. supported these findings due to the large number of 

false-positive lymph nodes observed in their study, generated 

by chronic granulomatous disease (CGD). For the assessment 

of pelvic lymph nodes’ involvement, several studies reported 

both acceptable sensitivity (68%) and specificity (78%) of 

11C-acetate uptake or lower patient-based sensitivity of only 

38% for lymph node detection. Intriguingly, the other two 

studies reported 11C-acetate as a suitable predictor of lymph 

nodes’ involvement [68] and a pelvic lymph nodes detection 

with higher sensitivity (90%) and specificity (67%). As a 

predictive biomarker, 11C-acetate uptake was associated with 

higher prostate-specific antigen velocities. Last but not least, a 

study conducted by Spick et al. showed comparable 

conventional bone scans and11C-acetate PET on patient-based 

analysis, suggesting that PET imaging using this tracer can 

accurately assess distant (bone) metastatic involvements. 

Another small-molecule-based radiotracer, known as 11C-

erlotinib, is heavily used nowadays in PET scans for lung 

carcinomas and colorectal cancer. In 2016, Bahce et al. 

studied the effects of erlotinib (the medication used to treat 

non-small-cell lung and pancreatic cancers) treatment on 11C-

erlotinib uptake in lung cancer patients. Five years later, 

Petrulli and coworkers showed that, among subjects with non-

small-cell lung cancer (NSCLC) and various epidermal growth 

factor receptor mutations, the kinetic properties of the tracer 

varied substantially. In addition, they also implemented a 

novel scanning protocol that highlighted the pronounced 

heterogeneity of (non-small) CLC and its impact on 11C-

erlotinib (77-83).  
 

CONCLUSION  
 

With the progressive development of imaging modality, more 

and more pharmaceutical industries and hospitals worldwide 

have paid attention to the clinical potential of emerging PET 

radiopharmaceuticals. Though, of the special characteristics of 

PET radiopharmaceuticals, current pharmaceutical regulations 

are probably inapplicable and would be a hurdle for clinical 
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use of PET radiopharmaceuticals in most countries. Thus, 

allpharmacopeia must work together for the betterment of PET 

radiopharmaceuticals in the future. 
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